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Fermilab's Advanced Computer Program is 
constructing a powerful 128 node multi-microprocessor 
system for data analysis in high-energy physics. The 
system will use commercial 32-bit microprocessors 
programned in Fortran-77. Extensive software supports 
easy migration of user applications from a 
uniprocessor environment to the multiprocessor and 
provides sophisticated program development, debugging, 
and error handling and recovery tools. This system is 
designed to be readily copied, providing COmpUting 

cost effectiveness of below $2200 per VAX 11/780 
equivalent. The low cost, commercial availability, 
compatibility with off-line analysis programs, and 
high data bandwidths (up to 160 MByte/set) make the 
system an ideal choice for applications to on-line 
triggers as well as an offline data processor. 

INTRODUCTION 

The need for computing in high-energy physics has expanded to such an extent 
that it is TX) longer possible to do all the computing that is necessary on 
conventional mainframes. Single experiments amass tens of millions of events; 
each of which requires several seconds of mainframe CPU time. The turn-on of the 
new collider experiments like CDF and DO at Fermilab and the LEP experiments, all 
with large computing appetites, further incFeases the need for less expensive 
computing power. 

Fermilab has established the Advanced Computer Program (ACP) [ll to research 
and develop more cost-effective and productive ways for high-energy physicists to 
use computing. The group's first project takes advantage of the event-oriented 
rB.ture of the experimental high-energy physics computing problem to produce a 
powerful and efficient parallel processing system. Based on. large arrays of 
commercial 32-bit microprocessors programable in Fortran, this will provide very 
cost-effective computing for data analysis. In this paper we will describe this 
initial project and its on and off line applications. 

DESIGN GOALS 

The primary design goal of the ACP multi-microprocessor SyStem is to IUs.ximi!ae 
cost effectiveness, in terms of useful computing /dollar. This goal can be met by 
using two basic strategies: First, high-volume cormnercial microprocessors are the 
computing engines of the system. Such processors provide extremely high 
cost-effectiveness and are programmable in high level languages. Second,~ at later 
stages of the project, the CPUs will be augmented with custom "hardware 
subroutine" co-processors. The original aim was to achieve, without 
co-processors, an equivalent computing power of better than 1 VAX 11/780 for 
$5000. This goal now appears likely to be exceeded by more than a factor of two. 



-2- 
Equally important is the gcal of ease of use, or user-friendliness. Special 

purpose processors for particular applications can be designed to run almost 
arbitrarily fast, but these are very inflexible and difficult to program- and 
conmission. We require that the processors of our system be programmable in 
Fortran-77, the standard for application programs in high-energy physics. The 
user interface for program development, dehixting, etc. must be at least as 
friendly as that provided by the VAX VMS operating system, another widespread 
standard in high-energy physics. Finally, the user must be able to transport a 
program already working on a VAX or similar uniprocessor system to the ACP system 
with a minimum of effort, without extensive program conversions. 

The third design gcal is flexibility and modularity. The ACP system consists 
of building blocks that can be easily reconfigured to meet the specific needs of 
different users. Different users may require more or less memory or different 
amounts of CPU power per I/O bandwidth. The modular approach also guarantees that 
the system can be easily upgraded as newer and more efficient processors become 
available. This allows the system to take advantage of the most advanced and 
cost-effective components available from industry at =w time without 
x-e-engineering the entire system. This also means that the system should not be 
totally reliant on any single vendor for critical components (such as the CPU chip 
or' board). 

The fourth design goal is that the system should be easily copied and 
maintained by non-experts. Users anywhere in the scientific community should be 
able to build and configure a system for their own needs without extensive 
involvement by ACP personnel. This means that the system should be assembled as 
much as possible out of commercially available components. 

SYSTEM ARCHITECTURE CONCEPTS 

We are not attempting to build a general purpose computer to satisfy all 
computing needs, or even all the needs of high energy physicists. Many computing 
applications will still require general purpose mainframes with their 
sophisticated operating system and full complement of peripheral devices. 
However, the large majority of computing cycles in high-energy physics are devoted 
to experimental event reconstruction where the same program is run on many 
millions of uncorrelated and independent events. The structure of the problem 
makes a trivial parallelism possible, giving different events to each of a large 
ensemble of processors with little or no interprocessor communication required. 

This is an architecture which maintains its high cost effectiveness because 
it has no need for complicated shared memory OT synchronization mechanisms that a 
fully general purpose parallel processor would need. The two other high-energy 
physics problems that will require large amounts of CPU time, accelerator 
simulations and lattice gauge theory calculations, also have simple parallelism 
inherent in the problems themselves. These problems are well matched to arrays of 
simply connected cost-effective microcomputers. In fact, it has been shown 121 
that many other scientific computing problems can be well solved with such 
systems. We will discuss here only the architecture pertinent to the 
reconstruction problem. However, we intend to take advantage of the flexibility 
of our system in future research on grid and ring architectures. 

This simple event oriented architecture consists of a large array of 
processing nodes all connected to a single host processor. The host delivers 
events to each of the nodes. When a node completes processing an event, the host 
will fetch that event from the node and deliver it a new one for processing. The 
core of the system is the individual processing node. It consists of a commercial 
32-bit microprocessor, floating point coprocessor, and enough local memory (l-16 
MHytes) to contain an entire program. Each node sits on a crate global bus and on 
its own private local bus. The global bus is used to download code and data to 
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all the mdes, and (in the future) for the nodes to access any crate global 
resources. The local bus allows each node to access its o!.m memory without 
interfering with any of the other odes. Customized coprocessor-s and nearest 
neighbor interconnections interfaces for use in grid structures will also be added, 
in the future, to the processing nodes. The computing power of a node, without 
special coprocessors, approaches that of a VAX 11/780 for physics problems in 
Fortran. 

UAW 730,750,or780 
SYSTEM HARDWARE CONFIGURATIONS 

The modularity of the ACP software and 
hardware allows configurations of v?.rYing 
complexity to support different performance and 
I/O requirements. A standard arrangement of nodes 
for event oriented data analysis is shown in 
Fig.1, which also shows other components of the 
initial ACP system. The nodes reside in standard 
commercial crates. Each crate has a single crate 
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Fig. 1 ACP system controlled 
by a large VAX as root. 

Uode l-l 

Fig. 2 ACP system controlled by tm MicroVAX 11s. 



controller which interfaces the crate to an ACP designed Branch Bus which -4- 
connects all the crates. The first crates will be VME, but Multibus II, 
Futurebus, BI-bus or other 32 bit buses will be supported with a modified crate 
controller, when inappropriate for a particularly cost-effective CPU. The Branch 
Bus is a simple single master RS 485 (differential TTL) bus, optimized for high 
speed 32-bit block transfers. The Branch Bus transmission scheme has been tested 
at speeds up to 40 MBytes/set (one word every 100 nsec), and is intended to be 
operated at 20 MBytes/sec~ ,Atthe top of Fig.1 is the "root" of the tree-like 
system, where the user's ghost program runs. In this 'simplest implementation 
example the root consists of a standard VAX with tape drives, interfaced to the 
Branch Bus through a DRll-W IMA interface and a Branch Bus Controller (BBC). An 
entry level system of this type, attached to an existing VAX 11/7&l or 11/750 
installation, will cost less than $50,000 for over 15 VAX 11/780 power in one 
crate of nodes. 

Higher performance versions of the ACP system are shown in Fig.2 and 3. In 
Fig.2 the root has been expanded. It is here based on two MicroVAXes. One 
handles tape I/O and Branch Bus communication, allowing the other MicroVAX to 
devote all its CPU power to the user's host program. The two MicroVAXes 
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Fig. 3 High performance offline multiple root and branch 
ACP system with a switch controlled by three MicroVAXes. 
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communicate through shared Q-bus memory residing in a VME crate using Q-bus to 
VME interfaces (QVI). The system shown in Fig.3 adds an additional MicroVAX .for 
output, a bus switch, and a second Branch Bus so that an event can be sent to one 
node on one of the Branch Buses at the same time that a second event is being 
fetched from a different node on the second bus. The switch allows up to 8 
separate Branch Buses to be in simultaneous operation, reaching an aggregate 
bandwidth of 160 Mbytes per second. Such a system can thus easily support any 
presently conceived on-line application or off-line applications with future 
higher speed mass storage peripherals (for example, laser disks). Fig.5 
represents the system presently under construction. 

SOFTWARE SUPPORT 

The user's main software task is to split an existing uniprocessor program 
into two pieces, one which will run on the host and a second which will run in 
parallel on all of the mdes. The host portion contains all the input and 
output: reading raw events from, and writing processed events to, tape, reading 
calibration files from disk, printing out results, etc. It also collects global 
statistics from mdes. The node portion contains all the actual event 
processing, which typically consumes the vast majority of CPU time. By 
necessity, all big data analysis programs already cleanly separate these host and 
node tasks. 

The user will encounter two important software environments. The first is 
the development host, a large multi-user VAX system. It has a few mdes attached 
to it for compiling and testing, and it supports the program development and 
debugging activities described below. All program and data files reside on disks 
on the development host, The production host, 
single-user 

on the other hand, is a 
system with a large number of nodes. It is devoted to production 

running of a single job for an extended period of time. It is networked to the 
development host for downloading of programs and data. 

An extensive package of software has been developed by the ACP which makes 
the user's task easy. It is described in a full User's Manual [3]. This 
software is provided in three layers of increasing complexity. The first layer 
provides sufficient functionality for the majority of users with a nrinimum of 
parameters and options. The individual user need only use those parts, 
of the second layer that are needed for a particular application. 

if any, 
Layer 3, which 

gives complete control over the system, is reserved for experts. 

All data passing between the host and the nodes is done by. standard ACP 
subroutines called from the user's host Fortran program. There are three modes 
of passing data: 

1. Event data. Routines SENDEVENT and GETEVENT pass one or more blocks of event 
data between the host and a single node; 

2. Broadcast data. Routine BROADCAST copies a block of calibration data from 
the host to all the mdes. 

3. Statistics data. Routine SUMNODE sums blocks of statistics or histogram data 
in all the mdes into single corresponding blocks in the host. 

The routines referred to above are in layer 1 of the multilayer support. More 
generality is available in layer 2. For example, the layer 1 version of 
SENDEVENT sends a single block of data to a fixed common block in any available 
node. Using layer 2, users can, for example, send multiple blocks of data to the 
same mde, direct the event to a particular node or class of nodes, and send 
variable length blocks of data. 
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Having prepared the Fortran source files for the host and for the nodes, the 
user invokes a VMS command procedure MULTICOMP which performs all compilations 
necessary to run on the multiprocessor system. This causes node files to be 
compiled and linked using the appropriate node compilers. The host file will be 
compiled and linked with ACP subroutines, including code that will dounload and 
startup the nodes, at run time. The user controls this procedure by entries in a 
User Parameter File (UPF). This determines which source files are to be compiled 
and linked and which libraries of routines are to be used. The UPF also contains 
entries that control error handling and verification (see below), and specify the 
particular running avironment the user desires. The running environment can be 
simulation within a single VAX, or a small number of nodes for testing attached 
to a development host, or a full-scale production system of hundreds of nodes 
under the production host. A simple RUN command starts execution. 

The "operating system" in the node is extremely simple and written in 
Fortran, allowing it to be ported to different types of nodes very quickly. Its 
job is to support the Fortran run-time environment (but not to allow major I/O 
operation, which are done on the host), and to provide for data transmission from 
the host. The user's event prwessing code is a subroutine in the node. When an 
event is passed to the node, the system calls the user's code. When processing 
is complete the user returns control to the system, which automatically informs 
the host of event completion. The node system also supports error handling. 

A multiprocessor presents a number of additional ways to deal with errors 
beyond those available on a uniprocessor. The ACP system gives the user five 
options when an error occurs: 

1. Ignore the error 

2. Continue with new events in the node where the error occured (losing the 
event with the error) 

3. Reload and restart the offending node with a fresh copy of the program, 
calibration constants, and data arrays 

0. Kill the offending mde, continuing the job with the remaining nodes 

5. Abort the entire job. 

The user can specify in the UPF which of these actions are to be taken for 
each of a number of different errors and classes of errors, and can switch to a 
more severe action after the Occurrence of a certain number of errors. For 
example, the error handler can ignore the first ten divide checks on a particular 
node, and then kill that node after any additional divide checks. The user also 
specifies what type of error log is to be saved for each error and how many nodes 
must remain alive before the job is automatically aborted.. Users can provide 
special subroutines to be called on certain error conditions such as ABORT or 
timeout. Defaults are provided so the user need make no entries in the UPF to 
get standard error handling. 

Part of the error handling system is a history file, which keeps track of 
the events sent to each node. This is used by ACP utilities to reproduce the 
precise sequence of events that produced a crash in some node so that the user 
can investigate with an interactive debugger those common situations whet-e an 
unsuspected problem in an earlier event causes a crash at a later time. 
Traceback support will be provided on the host based on analysis of memory dumps 
which may be saved after an error. 
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An important debugging technique available only on a multiprocessor system 

is verification. An identical event is sent to two different nodes and result 
data blocks compared. This technique can catch both subtle hardware failures and 
software bugs where the answer is incorrectly dependent on the history of 
previous events processed in a particular node. Verification is automatically 
performed by the ACP software at a frequency specified by the user in the UPF. 

PROJECT STATUS AND SCHEDULE 

The ACP project is proceeding in a number of phases. A six-node testbed 
system with a complete software prototype was constructed and tested last summer. 
This winter, benchmark boards based on the three 32-bit CPUs and accompanying 
floating point processors (Motorola 68020/68881, AT&T 32100/32106, and.DEC 
78032/71032) were built and performance tests carried out. With the completion 
of these preliminary activities we are now in the process of constructing a full 
scale 128-node system which is expected to be ready before the end of this year. 
Future efforts will include incorporation of higher performance CPUs, higher 
bandwidth I/O, development of custom co-processors, and studies of different 
interconnect architectures. 

The Testbed System consisted of 5 68000 CPUs with 512kB of memory each, and 
a single 8086/8087 CPU/FPU with 256kB of memory. The processors were in a 16-bit 
Multibus- crate, interfaced to a VAX 11/780 through a DR-11W interface. The 
system was operated during the summer of 1984 with the full complement of 
software described above. The overall performance of this system was low because 
of the limited power of the 16-bit @Us. The system was intended not for 
performance but primarily to demonstrate the ease of converting large physics 
application programs to the multiprocessor environment. Several actual track 
reconstruction programs were run on the multiprocessor after only a few days of 
program conversion effort. It also demonstrated that it is possible to use more 
than one type of processor in a transparent way and to make efficient use of 
multiple processors in the ACP system. 

In the next stage of the project test boards for each of the three high 
performance 32-bit CPU/FPU chip combinations, Motorola, AT&T, and DEC, were 
benchmarked. The beards used fast static RAM so the processors could be run with 
0 wait cycles. A fixed number of wait cycles (dip-switch selectable) could be 
inserted for all memory references tc study performance degradation for slower 
memory systems. Cache options could also be studied. 

The 68020 and 3ZlOO suffered less than 10% degradation when run at 1 wait 
cycle (total of four CPU cycles for a memory access) with no.external cache. 
Since this 1 wait cycle performance can be easily achieved using low-cost 
high-density 120 nanosecond dynamic RAM (for processors running at 16.67 MHz), 
the decision was made to build the full system using 1 wait cycle memory and no 
cache. Thus all benchmarks for these two CPUs were run with 1 wait cycle. The 
DEC 78032 CPU, which requires slower memory access times, can be run at 0 wait 
cycles with existing DRAM and was benchmarked accordingly. 

Benchmarks were run using a physics event simulator and track reconstruction 
code, written in Fortran 77. Our standard for comparison is the VAX 11/780 with 
floating point accelerator, running Version 3 Fortran. Results were as follows: 

CPU 

Mot. 68020 
AT&T 32100 
DEC 78032 

Clock Compiler Performance/VAX 
MHZ measured expected 

16.67 Absoft .57 >.8 
lb.67 AThT .74 >.9 
40 VMS v4 .89 .89 

Both the 68020 and 32100 compilers were unoptimized at the time the benchmarks 
were performed, while the 78032 compiler is quite highly optimized. New 
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optimized versions of the first two compilers will become available later this 
year, with expected performance improvements of 30-70s. Our best predictions for 
performance at the end oft 1985 are given in the last column of the table. 

Presentiy we are designing 
and constructing the components 
for a full scale system of 128 
nodes, using MicroVAXes 
hosts. The node CPU boards 
be built on standard VME 
with 2 MBytes of onboard 
Expansion memory up to 
of 8 MBytes is 
additional VME 
bus connection 

in a separate VME crate 

CPU card allows access to all 
address, data and control lines. 
This will be used for future 
developments such as 
interconnections and hardware 
subroutines. 

The initial system 

based processing 

for the 68020 CPU multilayer PC 
card, which is presently being 
laid out. The 32100 CPU board 
will be quite similar. Memory' 
cards have also been designed. 
The branch bus 

Fig. 4 Preliminary layout of ACP 68020 VME CPU 
and crate 

controller are in final 
board with 2 Mbytes memory. 

specification stage. The system'is expected to be complete, with the full 
complement of software described above, before the end of this year. It can be 
readily copied at an assembled cost of about $2000 per node, 
production host, and other overhead. 

including crates, 
Omnibyte Corporation, ,245 West Roosevelt 

Road, West Chicago, Illinois 60185, will sell the 68020 and 3ZlOO boards at 
prices, including a 2 year warranty, very close to self fabrication costs. 

ON-LINE APPLICATIONS 

The same features which make the ACP system attractive for use in off-line 
systems ~(the low cost per node, ease 
performance), 

of programming, and 
also make it suitable for use in 

high system 
on-line applications. Another 

important factor is the ability to use exactly the same software for both 
off-line and on-line. The up to 160 MBytes/set bandwidth of the Branch Bus and 
switch system exceeds the data collection bandwidth of virtually all experiments. 
The large amount of memory available in each CPU node provides a natural place to 
buffer events. The system is thus,well-suited for use as a higher level trigger 
in an on-line environment. 



Fig.5 shows an arrangement of ACP nodes in an on-line experiment. Events 
are delivered to the processing oades from the experiment's data acquisition bus 
interfaced to the ACP Branch Bus. Branch Bus interfaces are planned for FASTBUS, 
C-Bus and Unibus. Events are read out and logged on tape through a MicroVAX root 
as in the off-line case. User software controlling the system runs in the 
Resource Manager MicroVAX, which should be networked, as in the off-line case, to 
a larger development host VAX where promrams are developed, tested, and stored. 
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,of the processing nodes in an 
'on-line system, depending on 
~system requirements. 
Simplest is to leave complete 
control in the hands of the 
ACP Resource Manager. In 
this case, the Resource 
Manager will communicate the 
address of the next free node 
to the data acquisition 
,supervisor when the event 
;occurs. The data acquisition 
simply delivers the event to 
ithe correct address. If no 
!&odes are available, the data 
acquisition system must 
declare dead time and wait 
for a node to become free. 
Alternatively, more 
intelligence can be vested in 
the controllers of the data 
acquisition system. In this 

I case, the 
- Branch Bus 

ACP resource 
panager continues to check 
For errors and monitors event 

cmie Of crate or completion. However, the 
Node* Nlltkr. kctual allocation of nodes is 

done by the experimental data 

Ff--.- rizq--J ,g+.$~~;~~~~~~~ 
Fig. 5 Conceptual design for an On-line system nets too busv. 

system using ACP components. 
The modularity of the software-in the Resource Manager makes it easy to set 

up a system with control distributed appropriately for a particular experiment. 
In all cases, some communication path is necessary from the ACP Resource Manager 
to the supervisor of the data acquisition system. Depending on the application, 
this communication can be over DECNEf, FASTBUS, or other standard buses. Such a 
system will be able to deliver 100 events per second to the nodes. The system 
could accommodate as many as 512 nodes with a total CPU power of over 400 VAX 780 
equivalents. Output rate is determined by the speed of mass storage devices 
available, with a single Branch Bus able to run at 20 MBytes/set for output. The 
ACP system is expected to be used as the Level 3 trigger for CDF at Fermilab, 
Detaiis of the interface to the CDF data acquisition will be designed this 
silmmer . 

-9- 
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In 'general, online trigger processors are a research area where the 
precisely correct approach is not yet clear. Particularly for the SSC, new and 
imaginative methods need to be tried and evaluated. A major strength of the ACP 
system iS its flexibility, which allows tests of a number of different 
configurations before the best approach to the problem of dealing with 
luminosities of lo**33 is known. 
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